Key Insight About Mitochondrial Replacement Therapy

A new discovery may unlock the answer to a vexing scientific question: How to conduct mitochondrial replacement therapy, a new gene-therapy technique, in such a way that safely prevents the transmission of harmful mitochondrial gene mutations from mothers to their children. A study to be published Nov. 30 in the journal Nature suggests that clinicians select egg donors whose mitochondrial DNA (mtDNA) is compatible to the mother's ancestral mitochondria. Similar groups of mitochondrial DNA are known as haplotypes, each of which represents major branching points on the human genetic family tree. "This research suggests that we're going to have the greatest success rates for producing an embryo free of disease-causing genetic mutations by making sure we are using the right combination of haplotypes," said senior author Shoukhrat Mitalipov, Ph.D., who directs the Center for Embryonic Cell and Gene Therapy at OHSU.
read more.-->

New Research Shows How Synthetic DNA Vaccine Approach Protects Against Zika Virus Infection

As the global spread of the Zika virus continues, efforts are underway to halt the disease's transmission. While no licensed therapies or vaccines to protect against the Zika virus are currently available, new research published in the journal npj Vaccines demonstrates how a synthetic DNA vaccine approach successfully protected against infection, brain damage and death caused by the mosquito-borne Zika virus in vivo. In this preclinical study, 100 percent of the animal models were protected from Zika after vaccination followed by a challenge with the Zika virus. In addition, they were protected from degeneration in the cerebral cortex and hippocampal areas of the brain, while the other cohort showed degeneration of the brain after Zika infection.
read more.-->

Gene Therapy Shows Promise for Treating Niemann-Pick Disease Type C1

For the first time, National Institutes of Health researchers have demonstrated in mice that gene therapy may be the best method for correcting the single faulty gene that causes Niemann-Pick disease, type C1 (NPC1). The gene therapy involved inserting a functional copy of the NPC1 gene into mice with the disease; the treated animals were then found to have less severe NPC1 symptoms. The study, led by researchers at NIH’s National Human Genome Research Institute (NHGRI) and the Eunice Kennedy ShriverNational Institute of Child Health and Human Development, was published Oct. 26, 2016, in the journal Human Molecular Genetics.
read more.-->

Gene Therapy for Sickle Cell Disease Steps Closer

In a study published in Nature, they report how - using the CRISPR gene-editing tool - they corrected the gene in stem cells from diseased patients and showed they could make red blood cells capable of making functioning hemoglobin. They also transplanted the stem cells into mice and found them thriving in their bone marrow months later. Sickle cell disease is a group of inherited disorders where red blood cells form abnormal, hard and sticky, crescent, or sickle shapes instead of normal, flexible, disc-like shapes.
read more.-->

Gene Therapy Offers Hope for Treatment of Sickle Cell Anaemia

Scientists are finalizing plans to use gene therapy to treat one of the world’s most widespread inherited diseases – sickle cell anaemia. The technique could begin trials next year, say researchers. About 300,000 babies are born globally with sickle cell disease. The condition causes red blood cells to deform, triggering anaemia, pain, organ failure, tissue damage, strokes and heart attacks. In the west, patients now live to their 40s thanks to the availability of blood transfusions and other treatments. But in Africa most still die in childhood. Sickle cell anaemia is triggered by a genetic fault that changes one of the dozens of amino acids that make up haemoglobin, the key constituent of the red blood cells that carry oxygen around our bodies. The mutated haemoglobin undergoes a change in shape and blocks veins.
read more.-->

Gene Therapy for Cystic Fibrosis Lung Disease

Two new studies from the University of Iowa suggest that gene therapy may be a viable approach for treating or preventing lung disease caused by cystic fibrosis (CF). Working with CF pigs, the researchers, based in the UI Pappajohn Biomedical Institute (PBI), have shown that two different virus-based vectors can restore a working version of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is faulty in CF to the pigs' airway cells. Moreover, this gene replacement normalized important aspects of the lung biology and improved the ability of airway secretions to kill bacteria.
read more.-->

Promising Gene Therapy For Sickle Cell Ready for Clinical Trial

A new engineered gene therapy virus, inserted into blood stem cells and then transplanted into mice with sickle cell disease, markedly reduced red blood cell damage according to the study “Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype,” published in the Journal of Clinical Investigation. A clinical gene therapy trial is expected in the coming year in which researchers will use a gene manipulated harmless virus to prevent the “sickling” of red blood cells. The new gene therapy is based on research going back to the 1980s which revealed that people with a milder form of sickle cell disease carried a fetal form of hemoglobin.
read more.-->

Gene Therapy for LPLD Patients Linked to Lower Frequency and Severity of Pancreatitis

Up to 6 years after receiving a single treatment with the gene therapy product lipoprotein lipase (LPL), patients with the debilitating genetic disease LPL deficiency (LPLD) had about 50% fewer episodes of pancreatitis than before receiving the treatment. None of the study participants suffered severe pancreatitis following gene therapy and only one required admission to the intensive care unit for treatment of LPLD, which can be fatal, according to a study published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers (http://www.liebertpub.com/).
read more.-->

Another DNA Vaccine for Zika Shows Promise

A preventive DNA vaccine encoding two Zika structural proteins protected Rhesus macaques from viral infection. The results, published today (September 22) in Science, are encouraging for organizers of the ongoing Phase 1 clinical trial testing one of the two vaccines examined in this nonhuman primate study. The new work suggests a minimal antibody level in the blood that is likely necessary for protection against Zika virus infection in in people. “This is a reassuring development and critical advance,” said Nelson Michael of the Walter Reed Army Institute of Research in Silver Spring, Maryland, whose team is testing a formalin-inactivated viral particle vaccine. Michael was not involved in the present study, but regularly communicates with its authors, sharing Zika-related data. “This [DNA vaccine], if proven safe and [that it] generates the type of immune response in humans seen here in animals, is on the path to potentially become the first public health tool to mitigate the Zika virus epidemic in the Americas,” he tol
read more.-->

Smallest-Reported Artificial Virus Could Help Advance Gene Therapy

Gene therapy is a kind of experimental treatment that is designed to fix faulty genetic material and help a patient fight off or recover from a disease. Now scientists have engineered the smallest-reported virus-like shell that can self-assemble. It could someday carry potentially therapeutic DNA or RNA and transfer it to human cells. The report appears in the Journal of the American Chemical Society. The story of gene therapy is fraught with much hype and high-profile failures. But, hype and failures aside, it remains a promising route to treat a range of ailments, from rare genetic diseases to common conditions such as diabetes. Clinical trials to test various gene therapy treatments are underway. One possible approach is to copy the way viruses behave. When they infect people, viruses inject their genetic material into human cells. Artificial viruses have been engineered to mimic this step, but they tend to clump or are not uniform in size, which can hinder their effectiveness. Max Ryadnov and colleagues wanted to address these issues.
read more.-->