Gene Therapy Technique May Help Prevent Cancer Metastasis

The spread of malignant cells around the body, known as metastasis, is the leading cause of mortality in women with breast cancer. Now, a new gene therapy technique being developed by researchers at MIT is showing promise as a way to prevent breast cancer tumors from metastasizing. The treatment, described in a paper published today in the journal Nature Communications, uses microRNAs — small noncoding RNA molecules that regulate gene expression — to control metastasis. The therapy could be used alongside chemotherapy to treat early-stage breast cancer tumors before they spread, according to Natalie Artzi, a principal research scientist at MIT’s Institute for Medical Engineering and Science (IMES) and an assistant professor of medicine at Brigham and Women’s Hospital, who led the research in collaboration with Noam Shomron, an assistant professor on the faculty of medicine at Tel-Aviv University in Is
read more.-->

Novartis to Disband Cell & Gene Therapy Unit, 120 Jobs to go

Novartis is folding activities of its Cell and Gene Therapy unit into other business and research locations, eliminating 120 positions, the Swiss drugmaker said on Wednesday. The move intensifies a corporate makeover begun this year as it focuses on high-growth areas including cancer immunotherapy. Basel-based Novartis said the move will not derail its intentions to file CTL019, a chimeric antigen receptor T cell (CART) therapy, for treatment of young people with relapsed/refractory acute lymphoblastic leukemia with U.S. and European regulators in 2017. Nor will it disrupt a gene editing push that Novartis hopes will lead to new therapies for hard-to-treat diseases, it said.
read more.-->

Novel Gene Therapy Drug for Huntington’s Disease

Data from Vybion on a novel treatment for Huntington's disease has been published in the Journal of Neurodegenerative diseases. The published study links the ability of Vybion's proprietary, novel Intrabody (INT41) blocking of cellular gene dysregulation to the delay of cognitive and motor function loss in the well-validated vR6/2 animal model. INT41 interferes with direct binding of toxic N-terminal huntingtin fragments to DNA, as well as their transport into the nucleus. The data support a direct gain of function of N-terminal huntingtin protein fragments that may lead to neuron dysfunction and brain atrophy as well as a novel therapeutic modality. The data also demonstrate that Vybion's platform may have broader application in generating Intrabody drug candidates to difficult-to-drug targets, including intracellular proteins in neurodegenerative disorders and other disease areas such as oncology. Further, the platform may be used to validate new targets of interest, particularly in intracellular signal transduction pathways, prior to generation of new therapeutic candidates.
read more.-->

CRISPR-Cas9 Breaks Genes Better if you Disrupt DNA Repair

The popular gene-editing tool CRISPR-Cas9 competes with DNA repair, continually cutting what repair enzymes fix until the enzymes make a mistake, resulting in a broken gene. This led to a trick to improve cutting efficiency of the Cas9 protein. By dumping random bits of non-homologous DNA into the cell with Cas9, they disrupted the DNA repair process and boosted knockout efficiency up to five fold in human cell lines. University of California, Berkeley researchers have now found a way to boost the efficiency with which CRISPR-Cas9 cuts and disables genes up to fivefold, in most types of human cells, making it easier to create and study knockout cell lines and, potentially, disable a mutant gene as a form of human therapy.
read more.-->

Press Release: Aldevron Manufactures Malaria DNA Vaccine for Naval Medical Research Center

(Fargo, ND) August 16, 2016 – Today, at the State of Technology Conference with Senator Hoeven and the Fargo Moorhead West Fargo Chamber of Commerce, Aldevron announces completing the production of a DNA-based vaccine to combat malaria under a contract with the Naval Medical Research Center (NMRC). Aldevron, a leading contract manufacturer of plasmid DNA, proteins, and antibodies, produced three plasmid DNA constructs that have been delivered to NMRC in preparation for a phase I/II challenge study. “Malaria is a difficult problem from medical and socioeconomic perspectives. It is a great privilege to be a part of this project,” states Michael Chambers, CEO of Aldevron. As part of the contract, Aldevron manufactured gram quantities of plasmid DNA under cGMP conditions using the Company’s proprietary large-scale DNA production technology.
read more.-->

A Pioneer of Gene Therapy on the Future of the Industry

Dr. Jim Wilson, geneticist, University of Pennsylvania, talks about the recovery of the biotech field in regards to gene therapy. He discusses his history in the field, major moments through its development including setbacks, and future plans. To read the condensed version of his interview, please click below.
read more.-->

Biological Manufacturing Company gets its Start at NDSU

In 2002, the U.S. Center for Disease Control and Protection turned to a pair of NDSU graduates when the West Nile virus threatened to wipe out the world’s 200 remaining California condors. Michael Chambers and John Ballantyne created a DNA-based vaccine in less than two months. It was the first ever used outside a trial setting. This vaccine is an example of their specialty. Their company, Aldevron, has created specialized genetic material used in DNA-based vaccines and many gene therapy and gene editing treatments since it opened in 1998. The company has grown to include three locations in Fargo, North Dakota, Madison, Wisconsin, and Freiburg, Germany. But it got its start in Fargo, specifically, at NDSU. Aldevron’s international recognition can seem surreal at times, considering its humble start. After graduation, Chambers wanted to start a research company and eventually teamed up with Ballantyne. They were unable to secure financial backing from investors to build a laboratory and decided to finance the venture themselves. NDSU provided a solution, allowing the entrepreneurs to rent laboratory space and equipment in Hultz Hall.
read more.-->

Gene Therapy Unveils New Target for Treating Depression

Researchers at Northwestern Medicine say they have manipulated a novel target in the brain using gene therapy that could lead to new treatments for depression. The investigators showed decreasing hyperpolarization-activated cyclic nucleotide-gated (HCN) channel proteins reduced depression-like behavior in mice. If replicated in humans, the findings could inform fresh therapies for millions of patients who do not respond to existing treatments for depression. "Drugs currently available for treating depression help most patients, but they stop working for some patients and don't work from the get-go for others," said senior author Dane Chetkovich, M.D., Ph.D., a professor of neurology and physiology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine neurologist. "There is a real need for new therapies to help patients desperate for alternatives to the available therapeutic options."
read more.-->

New Targeted Gene Therapy Could Lead to Improved Treatment for Emphysema

Researchers have developed a new strategy using lung-targeted gene therapy that may lead to improved treatments for inherited diseases including emphysema. Alpha-1-antitrypsin deficiency (AATD) is the most common genetic cause of emphysema, a chronic lung disease that leads to significant morbidity and mortality. AATD, which affects up to 100,000 Americans, is caused by inheritance of a single gene mutation. The current treatment for patients affected by AATD involves weekly intravenous infusion of the normal AAT protein -- an inconvenient, invasive and expensive option. Delivery of a normal copy of the gene, known as gene therapy, is an experimental approach to treating some genetic conditions including AATD. Because patients with AATD have low levels of AAT protein in their lungs, researchers at the Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center have focused their recent efforts on evaluating whether targeting gene therapy directly to the lungs may have promise as a treatment for AATD.
read more.-->

Cancer Vaccines Conference in London

SMi Group is thrilled to present the 5th annual Cancer Vaccines conference, taking place on 21st & 22nd September 2016 in Central London, UK. Aimed at an audience of senior scientists and oncology specialists involved in targeted vaccines and drug research, Cancer Vaccines 2016 will provide a perfect platform to discuss pioneering clinical developments and the next generation of cancer immunotherapy. The 5th annual show will capture expert insight by honing in on new pathways with novel vaccines and immunotherapies, drug formulations, personalised treatment, immune check-point inhibitors, plus more. Join us this September for strategic direction on vaccine commercialisation and arm yourself with the key requirements and tools for successful vaccine development through informed guidance delivered by a top panel of speakers.
read more.-->